

IIS SAS, Bratislava city, Slovakia



# Institute of Inorganic Chemistry Slovak Academy of Sciences



# Head of the institute: Miroslav Boča

Speaker for this presentation: Viliam Pavlik

www.uach.sav.sk



## Motivations

- Energy sector
- Automotive industry
- Metallurgy



- Solar thermal energy storage
- Enable efficient, long-term high temperature materials/molten salts combinations
- Concentrated solar power system (CSP)
- Electrolytes for fuel cells and molten metal batteries
- Key reactor coolants, media for transfer of high temperature process heat from Gen-IV nuclear reactors
- Heat treatment of industrial components
- Pyroprocessing for extraction and purification of metals
- Catalysis
- Hi-tech applications



Spectral methods (IR, XPS, NMR, SIMS ...) Diffraction methods (X, synchrotron, neutron) Visualisation (SEM), Thermo-chem. prop. (STA, cal.) Phys.-chem. properties (PD, dens., sur. ten., visc., cond.)

#### **Objects**

## Cooperation





# A) **Physico-chemical** properties (examples)

Preparations and characterisation of various molten systems – "multicomponent" systems\* (LiF-NaF)eut-LaF<sub>3</sub> vs. (LiF-CaF<sub>2</sub>)eut-LaF<sub>3</sub>



(LiF-NaF)<sub>eut</sub>-LnF<sub>3</sub> (Ln= La, Nd, Sm and Gd)

# Preparations and characterisation of various molten systems – <u>"single" systems</u>

K3TaF8



(Ta0:F3







# Nitrates Accelerated corrosion testing (ACT)



Of course, the compatibility of industrial materials

with molten salts must be investigated.

#### High temperature corrosion behavior

#### of superalloys in molten salts – A review

Niketan S. Patel, Viliam Pavlík, Miroslav Boča

In: Critical Reviews in Solid State and

**Materials Sciences** 



## Corrosions looses of choosen alloys after 8h, 24h, 30h a 48h in FLiNaK (pure or with additives)



<u>**Titanium diboride**</u> with various sintering additives after 8h corrosion at 600 °C



Incoloy 800H superalloy in molten FLiNaK at 680 °C – corrosion mechanism proposal



(b) Alloy elements diffuse outward to surface first, and then dissolve into FLiNaK to form metal fluoride

# B) Solar energy and "solar salt"

## Starting with the EU project "ENERGOZ" in 2012: "Effective management and energy consumption for renevable resources"









### and currently continues in bachelor and master theses:

### \* NaNO3 + KNO3, (60 wt.% and 40 wt.%) NaCl = impurity 2 wt.% or 5 wt.%



0.15

E, V (vs. Pt wire el.) 000 con 000 con

-0.10

-0.15

-5

-2

lg i

Dependences of OCP on time at different sodium chloride content in the solar salt at 550 °C: (1), (2) and (3) – AISI 304; (4), (5) and (6) – AISI 316; (1) and (4) – 0 wt.% NaCl; (2) and (5) – 2 wt.% NaCl; (3) and (6) – 5 wt.% NaCl

Tafel plots for AISI 304 and AISI 316 samples in the solar salt without and with NaCl admixtures at 550 °C: (1), (2) and (3) – AISI 304; (4), (5) and (6) – AISI 316; (1) and (4) – 0 wt.% NaCl; (2) and (5) – 2 wt.% NaCl; (3) and (6) – 5 wt.% NaCl



DTA of three solar salts:

- Pure mixture NaNO3+KNO3
- 2. Adds of 2 wt.% NaCl
- 3. Adds of 5 wt.% NaCl

Time dependence of solar salt and water on the heating temperature of the heat storage tank.



\* Published DOI: 10.32434/0321-4095-2019-124-3-123-131

# C) Hydrogen and advanced ceramic

#### **Powders\*:**

- » Preparation of SiCN nanopowders by CVD
- Cross/linking and pyrolysis of Si-C-N-O organometallic precursors (cooperation with TU Darmstadt)
- » Preparation of carbon nanotubes (CNT's)

### **Engineering ceramics\*:**

- » Si<sub>3</sub>N<sub>4</sub>/SiC based micro/nanocomposites
- **Polymer derived mixed**  $\alpha/\beta$ **/o**-sialons
- » SiC special ceramics
- » CNT/alumina and CNT/Si<sub>3</sub>N<sub>4</sub> based composites
- » Oxinitride matrix materials for refractories

### **Engineering ceramics with function\*:**

- Layered composites (Si<sub>3</sub>N<sub>4</sub>/Si<sub>3</sub>N<sub>4</sub>, Si<sub>3</sub>N<sub>4</sub>/SiC) materials with selfdetection
- » SiC/(TiNb)C electricaly conductive ceramics
- » Transparent alumina and YAG based ceramics
- » MgSiN<sub>2</sub>, LaSi<sub>3</sub>N<sub>5</sub> HTC materials
- » Nitride based phosphors
- » Bioceramics for implants and SRBSN ceramics bio and HTC materials

\* - not all of mentioned systems are used for direct investigation of hydrogen evolution, but they serve to create a knowledge base for future experiments



- thermo-chemical processes
- electro-chemical processes

## Hydrogen economy in Slovakia

- Use stable and high-porous ceramic components as a working electrodes
- Preparation of high-quality nano- AND micro- surface by galvanostatic method in one step(!)
- Enormous reduction of time in fabrication of the electrodes (crucial component for H-evolution)
- >Increase of the surface of the working electrode
- ➢Increase of hydrogen evolution

Increase of productivity of the electrolyzer

Our preliminary results  $\rightarrow$ 





and even more ...

## Thanks for your attention!