

THE RESEARCH NEEDS FOR A FIRE SAFE SUSTAINABLE BUILT ENVIRONMENT

BATTERIES AND FIRE SAFETY

Dr. D. JOYEUX

REAL FIRES

SMALL BATTERIES AT HOME

11,1V, 1Ah

LARGE BATTERIES DESIGN IN TRANSPORTATION

Flash

insulated

www.efectis.com

occasion

NOBEL AWARD

Stanley Withingam: Composés d'insertion Li / Li_xTiS₂ (1977)

www.efectis.com

John Goodenough (1979) Li / LiCoO₂

WHY LITHIUM

HOW DOES IT FUNCTION?

BATTERY = A SYSTEM

WHERE ARE THEY

- ☐ Building:
 - Electromobility batteries to be charged
 - Electronic communication devices : PC, tablets, smartphones
 - Handyman tools
 - ...
- ☐ mobility:
 - Electromobility : EV, E-bikes
 - E-bus, E-trams
 - Sub-stations
- ☐ transportation:
 - E-trains,
 - E-navires
 - Tunnels
 - .

RUNAWAY OF LITHIUM BATTERY

SMALL BATTERIES FIRE TESTS

Heat release rates (kW, total enery (kJ), HF release (mg/s/g), mass loss (g) ...

Test	Weight	Max	THR	Hydrogen fluoride					
	loss (g, %)	HRR (kW)	(kJ)	Amounts from FTIR (g)	Amounts from filter (g)	Total amounts (g)	Amounts from gas washing bottles (g)	Total yields (mg/g)	Total yields (mg/Wh)
A	145 g 19.7 %	29	2766	1.2	1.0	2.2	N/A	15	24
В	155 g 21.0 %	19	2502	0.7	0.4	1.1	N/A	7	12
С	406 g 24.6%	31	6605	6.3	1.3	7.6	N/A	19	58
D	419 g 19.1%	53	6893	4.8	1.6	6.4	11.2	15-27	46-81

Efectis

LiPF₆

- ☐ Mainly LiPF₆
- □ Low temperature reaction 107 °C
- □ Large gaz producer POF₃ and HF

TOXICITY OF HYDROGEN FLUORIDE

- Irritating Gaz with high consequences on Health
- Serious damage especially on respiratory tract.
- Realease of Hydrogen Fluroride strongly corrosive with water.
- Fluorine Ion can penetrate on water and in other tissues generating poisoning modifying calcium, potassium level in blood
- Hydrogen Fluroride can produce pains later
- Few ppm of fluorohydride acid strongly irritating.
- HF(g) can be perceived at 0.04 ppm

Ref: Toxic Gases From Fire In Electric Vehicles Ref, WILLSTRAND, 2020

Ref: ATSDR - Agency for Toxic Substances and Disease Registry, "Medical Management Guidelines for Hydrogen Fluoride,"

Ref: U.S. National Library of Medicine, National Center for Biotechnology Information, "Hydrofluoric acid"

FIVE CONFERENCE: STATISTICS FROM NFPA

- Alarming statistics from US and Norway
- No intervention scheme
- Identification of many chemical species released in extinguishing waters, with large ecotox

INCREASE OF FIRE RISKS

- ☐ Size of batteries
- □ Quality of the batteries
- Number of batteries
- ☐ Insulation of batteries
- ☐ Aging of batteries
- ☐ Aging of the BMS
- ☐ Re-use of batteries
- ☐ Exposition of battery to fires
- ☐ Storage of batteries

AND NEW TECHNOLOGIES (ESS)

44 kWh 2 days of home consumption 1.6 x 1.2 x 0.4 m³

NEED OF EU-RESEARCH

- Statistics
 - Number of fires
 - Type of fires
- □ Phenomenon
 - Ignition
 - Runaway
 - Propagation
 - effluents
- ☐ Software: BMS information management
- ■Automatic extinction detection
- ☐ Firefighters intervention

NEED OF EU-LEGISLATION

- □BMS record information : how to use them for anticipation?
- ☐ Reuse of batteries: how to control their quality?
- ☐ Storage of battery in house : How to protect to high kinetics ? how to protect to fire propagation?

Daniel JOYEUX

Président

daniel.joyeux@efectis.com

Mob: +33 (0) 637 52 83 20

