Novel opportunities for non-invasive diagnostics for cancer patients

Prof. Boris Turk, PhD, PhD
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
Cancer is still one of the leading causes of mortality in developed countries, which is at least partially linked to late diagnosis.

Proteolytic enzymes (proteases) are often overexpressed in cancer: which opportunities this offers for diagnosis?

- Proteases, in particular cysteine cathepsins and matrix metalloproteases are often secreted from infiltrated immune cells – extracellular cathepsins markers of inflammation and inflammation-associated diseases such as many cancers;
- Especially cathepsins highly suitable imaging targets as they offer good signal-to-noise ratio due to their cancer overexpression and secretion.
- Extracellular cathepsins also highly suitable targets for targeted drug delivery
Active targeting of cathepsins – potential for theranostic applications

Tumor cells (PyMT TC) and macrophages (dBMM) express and secrete much more catB than normal cells (MEFs), which can be successfully targeted by the LNC-NS-629 system.

Table 1: A list of proteins identified in conditioned media from primary PyMT tumor cells (PyMT TC) and differentiated bone marrow derived macrophages (dBMM). The proteins are ordered by relative abundance as estimated from spectral counting in tumor cells.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Uniprot accession</th>
<th>Number of peptides</th>
<th>Peptide spectral counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathepsin B</td>
<td>P10605</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>MCF-1</td>
<td>P07141</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Cathepsin L</td>
<td>P06797</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>MMP-12</td>
<td>P34960</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Ferritin light chain</td>
<td>Q3THE6</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Mikhaylov et al., (2014)
Angewandte Chemie Intl Ed.
LNC-NS-629 system successfully targets tumors in vivo: MRI in breast cancer mouse model

T_1-weighted MR images of orthotopic breast cancer mouse model after administration of LNC-NS-629 containing MRI contrast agent, Magnevist®

LNC-NS-629 system does not target normal tissues: no visible on- or off-target effect

LNC-NS-629 encapsulated doxorubicin much more efficiently killing PyMT mouse breast cancer cells than doxyl (liposome encapsulated doxorubicin wo targeting)

PyMT cells were treated with doxorubicin encapsulated in naked LNC (LNC-Dox) and CtsB targeted LNC-NS-629 (LNC-NS-629-Dox) liposomes at varying Mikhaylov et al., (2014) Angewandte Chemie Intl Ed.
In addition to small molecules, protein molecules can be used in imaging: antibodies or engineered proteins (DARPin's, …)

- **DARPin**: designed ankyrin repeat proteins: very stable, easy to make in E. coli, ribosome display typically generates cca 10^{12} binders, …
- Many uses: biochemical tools (assist in crystallization, …), diagnosis tools, therapeutics

Targeting cancer-associated cathepsin B by DARPinss

Over 40 binders obtained after 8 rounds of selection
(4 against human, 4 against mouse cat B)
DARPin 8h6 binds and inhibits human and mouse cat B with pM affinity
(Ki ~ 35 pM)

Kramer et al. (2017) Theranostics
Crystal structure of DARPin 8h6 (red) and 81 (green) in complex with cathepsin B

Kramer et al (2017) Theranostics
Cathepsin B in mouse model of breast cancer can be successfully imaged with 8h6 DARPin (PyMT and 4T1)
Conclusions

- Proteolytic enzymes, such as cysteine cathepsins B and S, are highly suitable as targets for diagnostic imaging in cancer and other inflammation-associated diseases.
- In addition to small molecule imaging agents (substrates, ABPs) engineered proteins (DARPins) offer an alternative in diagnostic imaging of cathepsins in cancer.
- Proteolytic enzymes such as cysteine cathepsins are highly suitable as targets for targeted drug delivery in cancer and other inflammation-associated diseases (therapy) – paradigm shift; proteases are not only therapeutic targets!
Acknowledgements

- Dept. Biochem. & Mol. & Struct. Biol., J. Stefan Institute, Ljubljana
 Olga Vasiljeva
 Georgy Mikhaylov
 Lovro Kramer
 Matej Vizovišek
 Marko Fonovič
 Gregor Kosec*
 Dejan Caglič*
 Barbara Sobotič*
 Vito Turk
 Dušan Turk
 Miha Renko*

- Dept. Solid State Physics, J. Stefan Institute, Ljubljana
 Urska Mikac

- Albert Ludwigs University, Freiburg,
 Thomas Reinheckel

- University of Zurich
 Markus Gruetter
 Markus Seeger
 Markus Rudin

- University of Bielefeld,
 Norbert Schaschke
 Denis Klimpel

Funding:
Slovene Research Agency, FP7 project Alexander
Thank you!