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Machine learning, a collection of data-analytical techniques aimed at building predictive models
from multi-dimensional datasets, is becoming integral to modern biological research. By enabling
one to generate models that learn from large datasets and make predictions on likely outcomes,
machine learning can be used to study complex cellular systems such as biological networks.
Here, we provide a primer on machine learning for life scientists, including an introduction to
deep learning. We discuss opportunities and challenges at the intersection of machine learning
and network biology, which could impact disease biology, drug discovery, microbiome research,
and synthetic biology.
Introduction
Over the last decade, we have seen a dramatic increase in the

number of large, highly complex datasets being generated from

biological experiments, quantifying molecular variables such as

gene, protein, and metabolite abundance, microbiome compo-

sition, and population-wide genetic variation, to name just a

few. Community efforts across research disciplines are regu-

larly generating petabytes of data. For example, The Cancer

Genome Atlas has sampled multiple -omics measurements

from over 30,000 patients across dozens of different cancer

types, totaling over 2.5 petabytes of raw data. Projects of

similar scope, such as the Human Microbiome Project, the

ENCODE Project Consortium, and the 100,000 Genomes Proj-

ect, are generating overwhelming amounts of data from bacte-

ria to humans.

These datasets present the raw material needed to gain in-

sights into biological systems and complex diseases, but the po-

tential of these data can only be realized through higher-level

analysis. The above projects illustrate why it is becoming imper-

ative to focus our data-analytical approaches on tools and tech-

niques specifically tailored to handle large, heterogeneous, com-

plex datasets. Machine learning, an area of long-standing and

growing interest in biological research, aims to address this

complexity, providing next-level analyses that allow one to

take new perspectives and generate novel hypotheses about

living systems.

Machine learning is a discipline in computer science wherein

machines (i.e., computers) are programmed to learn patterns

from data. The learning itself is based on a set of mathematical
rules and statistical assumptions. A common goal in machine

learning is to develop a predictive model based on statistical as-

sociations among features from a given dataset. The learned

model can then be used to predict any range of outputs, such

as binary responses, categorical labels, or continuous values.

Briefly, for a problem of interest—say, the identification and

annotation of genes in a newly sequenced genome—a ma-

chine-learning algorithm will learn key properties of existing an-

notated genomes, such as what constitutes a transcriptional

start site and specific genomic properties of genes such as GC

content and codon usage, and will then use this knowledge to

generate a model for finding genes given all of the genomic se-

quences on which it was trained. For a newly sequenced

genome, the algorithm will apply what it has learned from the

training data to make predictions about the putative functional

organization of the genome.

Applications of machine learning are becoming ubiquitous in

biology and encompass not only genome annotation (see, e.g.,

Leung et al., 2016; Yip et al., 2013), but also predictions of pro-

tein binding (see, e.g., Alipanahi et al., 2015; Ballester andMitch-

ell, 2010), the identification of key transcriptional drivers of can-

cer (Califano and Alvarez, 2017; Carro et al., 2010), predictions of

metabolic functions in complex microbial communities (Langille

et al., 2013), and the characterization of transcriptional regulato-

ry networks (Djebali et al., 2012; Marbach et al., 2012), to name

just a few. In short, any task where a pattern can be learned and

then applied to a new dataset falls under the auspices of ma-

chine learning. A key advantage is that machine-learning

methods can sift through volumes of data to find patterns that
Cell 173, June 14, 2018 ª 2018 Elsevier Inc. 1581

mailto:james.costello@ucdenver.edu
mailto:jimjc@mit.edu
https://doi.org/10.1016/j.cell.2018.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.05.015&domain=pdf


would be missed otherwise. In the age of big data in biological

and biomedical research, machine learning plays a critical role

in finding predictive patterns in complex biological systems.

Here, we provide a high-level description of machine learning

as it relates to biological research and explore opportunities at

the intersection of machine learning and network biology, an

area of research that deals with biological networks and large

multi-dimensional datasets. Network biology involves the study

of the complex interactions of biomolecules that contribute to

the structures and functions of living cells. The field plays a cen-

tral role in the modeling of biological systems, complemented by

the highly complex datasets generated across a myriad of multi-

omics programs. Network biology involves both the reconstruc-

tion and analysis of large-scale endogenous biological networks

(in the context of systems biology), as well as the design and

construction of small-scale synthetic gene networks (in the

context of synthetic biology). The area has benefited from ma-

chine learning largely in the identification of network architec-

tures (Butte and Kohane, 2000; Cahan et al., 2014; Faith et al.,

2007; Friedman, 2004; Margolin et al., 2006). The diversity of ap-

proaches for network inference is extensive, and we direct the

reader to important reviews and commentary on the subject

(e.g., De Smet and Marchal, 2010; Hill et al., 2016; Marbach

et al., 2012). These reverse-engineering approaches have shown

a remarkable ability to learn patterns from input data to generate

biologically relevant gene regulatory networks, with interesting

applications in the identification of drivers of drug response or

disease phenotypes (e.g., Akavia et al., 2010; di Bernardo

et al., 2005; Costello et al., 2014; Walsh et al., 2017). As we will

discuss below, there are many additional opportunities for mov-

ing the field forward through the integration of multi-omics data-

sets and phenotypicmeasurements with novel machine-learning

methods.

This Review is intended for biological researchers who are

curious about recent developments and applications in machine

learning and its potential for advancing network biology given the

vast amounts of data being generated today. We start by leading

the reader through a primer on machine learning, where we

discuss key concepts needed to understand how machine

learning approaches can be applied and utilized in network

biology. We include a brief introduction to deep learning, a

powerful form of next-generation machine learning. This is fol-

lowed by a discussion on how next-generation machine learning

methods could be used to expand our understanding of biolog-

ical networks and disease biology, to discover and develop novel

therapeutic compounds, to study and characterize host-micro-

biome interactions, and to identify design rules and functional

network architectures for synthetic gene circuits. We highlight

these opportunities, as well as an array of challenges that need

to be addressed to fully realize the potential of machine learning

in network biology.

A Primer on Machine Learning
Below, we introduce and describe the basic concepts, general

workflows, and main categories of machine learning. We offer

some thoughts on principles that should be considered when

designing and implementing a machine-learning method in bio-

logical research. We also include a brief discussion on deep
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learning, a next-generation machine-learning approach that is

increasingly being applied in medicine and biology. This primer

is intended for readers with little to no knowledge of machine-

learning algorithms.

Basics of Machine Learning

Machine-learning methods aim to generate predictive models

based on an underlying algorithm and a given dataset. The input

data to a machine-learning algorithm typically consist of ‘‘fea-

tures’’ and ‘‘labels’’ across a set of samples. Features are the

measurements across all samples, either raw or mathematically

transformed, while labels are what the machine-learning model

aims to predict—that is, the output of the model. As we discuss

below, machine learning algorithms can also deal with datasets

lacking labels. Illustrated in Figure 1, the general machine-

learningworkflow is to first, process the input data; second, learn

or train the underlyingmodel (a set of mathematical formulas and

statistical assumptions that define the learning rules); and third,

use the machine learning model to make predictions on

new data.

The learning process itself refers to finding the optimal set of

model parameters that translate the features in the input data

into accurate predictions of the labels. The parameters are found

through a series of back and forth steps, where parameters are

estimated, the model performance is evaluated, errors are iden-

tified and corrected, and then the process repeats. This process

is called training and will proceed until the model performance

cannot be improved upon, which is assessed by the minimiza-

tion of the model error. Once the optimal parameters are identi-

fied, the model can be used to make predictions using new data.

In biological applications, features can include one or more

types of data, such as gene expression profiles, a genomic

sequence, protein-protein interactions, metabolite concentra-

tions, or copy number alterations. Features can be continuous

(e.g., gene expression values), categorical (e.g., gene functional

annotation), or binary (e.g., genes on or off). Labels, like features,

can be continuous (e.g., growth rate), categorical (e.g., stage of

disease), or binary (e.g., pathogenic or non-pathogenic). As la-

bels can be continuous or discrete, many machine-learning

methods fall under regression or classification tasks, respec-

tively, where a regression task involves the prediction of a contin-

uous output variable and classification tasks involve the predic-

tion of discrete output variables.

As noted above, the goal of training a machine-learning model

is to use it to make predictions on new data. If the model is ac-

curate on the training data, as well as on independent datasets

(e.g., test data), then the model is said to have been properly

learned. However, a given machine-learning model can be

trained to predict the training data with high accuracy while

failing to make accurate predictions on test data. This is referred

to as overfitting and occurs when the parameters for the model

are fit so specifically to the training data that they do not provide

predictive power outside these data. It is also possible to have an

underfit machine learning model, where the model does not

accurately predict the training data. Overfitting and underfitting

are major causative factors underlying poor performance of

machine-learning approaches. The former can arise when the

machine-learning model is too complex (too many adjustable

parameters) relative to the number of samples in the training



Figure 1. Machine-Learning Applications Build Models to Interpret and Analyze Datasets
Data consist of features measured over many samples, including quantification of genes, proteins, metabolites, and edges within networks. A machine-learning
approach is selected based on the prediction task, underlying properties of the data, and if the data are labeled or unlabeled. If the data are unlabeled, then an
unsupervised approach is needed, such as PCA or hierarchical clustering. If the data are labeled, then a supervised approach can be applied, which will generate
a predictive model for either regression or classification of the data based on input labels. After applying the appropriate machine learning approach, the pre-
dictions must be validated. New data can be generated or collected and used to refine the learned model, improve prediction performance, and develop novel
biological hypotheses.
dataset, while the latter occurs when the model is too simple.

Overfitting can be addressed by increasing the size of the

training dataset and/or decreasing the complexity of the learning

model, whereas underfitting can be remediated by increasing

the model’s complexity (Domingos, 2012).

The quality of the input data, in addition to the quantity of the

training data, is key to the entire machine-learning process. The

old computer-science adage of ‘‘garbage in, garbage out’’ was

never truer than it is withmachine-learning applications. The per-

formance of any given machine-learning algorithm is dependent

on the data used to train the model. Properly formatting, clean-

ing, and normalizing the input data constitute critical first steps.

The input dataset might have many missing values and, thus, is

incomplete. The options for dealing with missing data include

inferring the missing values directly (e.g., imputation) or simply

removing sparse features. Moreover, not every input feature in

a given biological dataset will be informative for predicting the

output labels. In fact, including irrelevant features can lead to

overfitting and therefore hinder the performance of the ma-

chine-learning model. A process called feature selection is often

used to identify informative features. An example of a feature se-

lection technique is to correlate all input features with the labels

and retain only those features that meet a pre-defined threshold.

For additional insight into input data and feature selection, we

refer the reader to several excellent articles (Chandrashekar

and Sahin, 2014; Domingos, 2012; Guyon and Elisseeff, 2003;

Little and Rubin, 1987; Saeys et al., 2007).

Categories of Machine-Learning Methods

There are two overarching categories of machine learning

methods—namely, unsupervised and supervised learning (see

James et al., 2013; Rencher, 2002). Unsupervised approaches

are used when the labels on the input data are unknown; these

methods learn only from patterns in the features of the input

data. Commonly used unsupervised methods include principal

components analysis (PCA) and hierarchical clustering. The

goal of unsupervised approaches is to group or cluster subsets

of the data based on similar features and to identify how many

groups or clusters are present in the data. While the machine
is used to identify clusters or reduce the dimensions of data

directly, an independent predictive model is not produced. In

practice, when new data become available, there are two op-

tions: (1) the new data can be mapped into the clustered or

dimension-reduced space or (2) the clustering or reduction of di-

mensions can be performed once again with all of the data

included. Using either of these approaches, one can determine

where the new data fit with respect to the original data (Ghahra-

mani, 2004).

Unsupervised techniques can be advantageous in certain sit-

uations. For instance, in a case where the sample labels are

missing or incorrect, unsupervisedmethods can still identify pat-

terns, since the clustering is performed purely on the input data.

Additionally, unsupervised methods are well suited for visualiza-

tion of high-dimensional input data. As an example, by plotting

the first two principal components of a PCA, one can judge the

relative distance (a metric of similarity) between samples on a

simple two-dimensional plot summarizing information from hun-

dreds or thousands of features (Abdi and Williams, 2010;

Shlens, 2014).

Supervised methods, on the other hand, are applied when la-

bels are available for the input data. In this case, the labels are

used to train the machine-learning model to recognize patterns

that are predictive of the data labels. Supervised methods are

more typically associated with machine-learning applications

because the trained model is a predictive one; thus, when new

input data become available, predictions using the trainedmodel

can be directly made. Of note, the output of unsupervised ap-

proaches can be used as input to supervised approaches. For

example, the clusters discovered in hierarchical clustering can

be used as input features to supervised methods. Additionally,

supervised models can use the output of PCA as input and

work directly on the reduced feature space, as opposed to the

full set of input features.

Two notable sub-classes of machine-learning methods that

fall under the umbrella of supervised methods are semi-super-

vised learners and ensemble learners. Semi-supervised

methods can be utilized in situations where the labels are
Cell 173, June 14, 2018 1583



incomplete, e.g., only a small amount of the training data are

labeled. This occurs quite often in biological contexts, e.g., for

a set of genes of interest, only a small subset may be functionally

annotated. With semi-supervised learning, the labeled data are

used to infer labels for the unlabeled data, and/or the unlabeled

data are utilized to gain insights on the structure of the training

dataset. Semi-supervised learning aims to surpass the model

performance that can be achieved either by ignoring the labels

and conducting unsupervised learning or by ignoring the unla-

beled data and conducting supervised learning. Ensemble

learners, on the other hand, combine multiple independent ma-

chine-learning models into a single predictive model so as to

obtain better predictive performance. These methods are based

on the fact that all machine-learning approaches are biased to

identify method-specific patterns. Thus, combining multiple

learners can produce better and more robust predictions

compared to an individual learner (Dietterich, 2000; Marbach

et al., 2012; Rokach, 2010).

Applying Machine Learning in Biological Contexts

There are several factors to consider when selecting and

applying machine-learning algorithms to biological questions,

particularly given the variability of biological data and the

different experimental platforms and protocols used to collect

such data. Due to both technical and biological differences, a

machine-learning model trained on one dataset may not gener-

alize well to other datasets. Any new dataset should match the

general properties of the data used to train the model. The new

data should also be processed using the same pipeline as the

training data. Should the new data differ significantly from the

training data, the predictions from the machine-learning model

will most likely be spurious.

Machine-learning methods, much like molecular biology tech-

niques, are context specific. Both machine learning and molec-

ular biology experiments require careful experimental design to

properly test a hypothesis. While the broad goal of machine

learning is to develop predictive models, the algorithms that

underlie the predictors make different assumptions, and their

performancemay change under different conditions. All method-

ological choices have tradeoffs; this concept is widely appreci-

ated in computer science and has been termed the ‘‘no free

lunch theorem’’ (Wolpert and Macready, 1997).

The performance of machine-learning methods can be

affected by multiple factors, including feature selection, user-

defined parameters, and the implementation of the methods

themselves. Direct evidence that these factors are major drivers

of machine-learning performance in biological applications can

be found in the Dialogue for Reverse Engineering Assessment

and Methodology (DREAM) challenges, an open-data, crowd-

sourcing effort to find solutions to big-data research questions

in network biology and medicine (Costello and Stolovitzky,

2013). Examples of previous challenges include the inference

of genome-scale gene regulatory networks (Marbach et al.,

2012) and the prediction of drug sensitivities and synergies using

multi-omic datasets (Bansal et al., 2014; Costello et al., 2014).

Many network inference approaches can be defined as unsuper-

vised learning, where the input data are used to predict interac-

tions (edges) between biomolecular entities (i.e., features) given

the set of experimental observations. A second category of
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network inference algorithms uses supervised learning ap-

proaches, where an underlying inferred network is used to

make predictions on a novel sample. Such approaches have

been highly successful in the characterization of drug mecha-

nism of action (di Bernardo et al., 2005; Bisikirska et al., 2016;

Costello et al., 2014) or drivers of disease states (e.g., Akavia

et al., 2010; Mezlini and Goldenberg, 2017).

Each DREAM challenge presents the network biology research

community with a specific question and the necessary data to

address it. Computational models, commonly machine-learning

methods, are needed to address each challenge, but there are

no restrictions placed on the types of models that can be applied.

A fundamental component to each challenge is a gold standard,

an evaluation dataset that is hidden from all participants and

used to assess eachmethod’s performance, thus providing an in-

dependent, unbiased assessment to rank the different methods.

With several dozen DREAM challenges completed (Saez-Rodri-

guez et al., 2016), it is possible to identify consistent patterns

that can be distilled into three ‘‘rules of thumb’’ for applying ma-

chine learning approaches in network biology:
(1) Simple is often better: Regardless of the challenge, it is

almost certain that a straightforward machine learning

approach will be among the top performing models.

These models often include linear regression-based

models (e.g., elastic nets), which perform well across a

range of machine learning tasks and thus present an

excellent starting point.

(2) Prior knowledge improves performance: The application

of domain-specific knowledge almost always helps any

predictive model. For example, a challenge was run to

reverse engineer signaling networks in breast cancer us-

ing phospho-proteomic measurements (Hill et al., 2016).

The use of prior knowledge of elements and connections

in the signaling network enhanced the ability of machine

learning approaches to predict causal signaling inter-

actions.

(3) Ensemble models produce robust results: As discussed

above, ensemble models integrate predictions from mul-

tiple, independent predictors. If done properly, the stron-

gest signals across predictors will rise to the top.

Ensemble predictors consistently performed among the

best across challenges and tended to be the most robust

to noise in the datasets.

The DREAM challenges present ideal sets of results to analyze

and compare the performance of different machine learning

methods. Across different challenges, it can be seen that no sin-

gle machine-learning method or class of methods always per-

forms best. Thus, there is no ‘‘magic bullet’’ method that will opti-

mally solve all machine learning tasks in network biology. For

additional insight into machine learning in the context of biolog-

ical research, we refer the reader to several excellent review ar-

ticles (Califano et al., 2012; Pe’er and Hacohen, 2011; Zhang

et al., 2017).

Deep Learning: Next-Generation Machine Learning

Next-generation sequencing technologies introduced a shift in

the throughput, scalability, and speed with which nucleotide



sequences could be analyzed. Here, we use the term ‘‘next gen-

eration’’ to describe machine-learning approaches that are be-

ing developed and used to deal with the explosion of data in

many fields, including biology and medicine. We focus our dis-

cussion on deep learning, a next-generation machine-learning

approach that is increasingly being applied to cope with the

complexity and volume of these data.

Deep-learning methods typically utilize neural networks.

Loosely modeled after neurons in the human brain, neural net-

works transmit information through layers of weighted, intercon-

nected computational units or ‘‘neurons’’ (McCulloch and Pitts,

1943; Parker, 1985; Rumelhart et al., 1986; Werbos, 1974). The

simplest neural network architecture has three layers: an input

layer, a middle or hidden layer, and an output or prediction layer.

The neurons in the input layer take the raw data as input and pass

the information to the hidden layer, which uses a mathematical

function to transform the raw data into a ‘‘representation’’ that

helps the machine learn patterns within the data. The output

layer relays back to the problem at hand—classification or

regression—based on the transformation performed by the hid-

den layer (Angermueller et al., 2016). The objective is to train the

neural network such that it learns the appropriate representa-

tions to accurately predict output values for new sets of

input data.

A deep neural network is a neural network that includes multi-

ple hidden layers (Figure 2A); the greater the number of hidden

layers, the deeper the neural network. The hidden layers are con-

nected sequentially such that each of the hidden layers learns

properties about the structure of the data by taking as input

the transformed representation produced from the previous hid-

den layer. Researchers can define the number and size of the

hidden layers depending on the purpose of the learning model.

For example, a recurrent neural network (RNN) takes as input

one-dimensional sequential data, such as words in a sentence

or bases in a DNA sequence (Angermueller et al., 2016; LeCun

et al., 2015). RNNs have ‘‘thin’’ hidden layers, often comprised

of single neurons connected in a linear architecture. A convolu-

tional neural network (CNN), on the other hand, processes data

with two or more dimensions, such as a two-dimensional image

or a high-dimensional multi-omics dataset. CNNs often have

complex hidden layers consisting of many neurons in each layer

(Ching et al., 2018; LeCun et al., 2015).

A crucial aspect of deep learning is that the behavior of these

layers—that is, how they transform the data—can be learned by

the machine rather than defined by the researcher (Angermueller

et al., 2016; LeCun et al., 2015). Deep neural networks accom-

plish this by iteratively tuning their internal parameters to mini-

mize prediction error, typically via a process known as backpro-

pagation. With backpropagation, an error signal based on the

difference between the model’s output and the target output is

computed and sent back through the system (Mitchell, 1997).

The parameters (or weights) in each layer of the neural network

are then adjusted so that the error for each neuron and the error

for the network as a whole are minimized. This process is

repeated many times until the difference between the model’s

output (prediction) and the target output are reduced to an

acceptable level. Because deep learning methods attempt to

construct hidden layers that learn features that best predict
successful outcomes for a given task, they can recognize novel

patterns in complex datasets that would have been missed by

other techniques (Angermueller et al., 2016; Krizhevsky et al.,

2012; LeCun et al., 2015). This is an especially powerful tool for

biological applications and enables one to extract the most pre-

dictive features from complex datasets.

A key drawback of the deep learning paradigm is that training a

deep neural network requires massive datasets of a size often

not be attainable in many biological studies. This is due to the

need to train the many hidden layers in a deep neural network.

Moreover, the complex architecture and training process

involved in deep learning largely prevent one from understanding

how a deep neural network calculates a prediction, as one can

only control the input data and some parameters in the model

(e.g., number and size of hidden layers). This can limit the inter-

pretability of the model’s predictions, thereby constraining its

utility for yielding insights on underlying biological mechanisms

(Ching et al., 2018). In the next section, we discuss these and

other challenges and offer some thoughts on how to address

them in the context of network biology.

Intersection of Machine Learning and Network Biology
As we gather increasingly large and diverse data on the many

layers of biological systems, one can devise machine-learning

approaches that take advantage of these datasets to build

more complex and biologically realistic network models across

multiple levels, from gene regulation to interspecies interactions

(Karr et al., 2012, 2014). Additionally, next-generation machine-

learning methods provide tools that can enhance the utilization

of these network models for a variety of biomedical applications.

Below, we highlight outstanding problems and opportunities in

network biology that span disease biology, drug discovery, mi-

crobiome research, and synthetic biology and that are ripe for

exploration under a next-generation machine learning lens. We

also discuss key challenges that need to be overcome to fully

realize the potential of machine-learning methods in network

biology.

Disease Biology

Network biology can help us gain a better understanding of the

intricacies of disease biology. While traditional approaches rely

on the identification and characterization of particular aspects

of a disease, such as the discovery of disease-associated genes,

network biology takes a more holistic approach and, as such, is

poised to provide us with a more comprehensive view of the fac-

tors that drive disease phenotypes. Rather than simply identi-

fying potential biomarkers, network biology allows us to charac-

terize networks and sub-networks of biomolecular interactions

critical for the emergence of a disease state (Barabási andOltvai,

2004; Bordbar and Palsson, 2012; Chuang et al., 2007; Goh

et al., 2007; Greene et al., 2015; Margolin et al., 2013; Schadt

and Lum, 2006).

In defining network-specific characteristics of a disease, one

can rationalize the use of machine learning algorithms to help un-

derstand and define the underlying disease mechanisms. As an

example application, one could use existing network knowledge

from sources such as BioGRID (Chatr-Aryamontri et al., 2017;

Stark et al., 2006)—a database of gene interactions, protein-pro-

tein interactions, chemical interactions and post-translational
Cell 173, June 14, 2018 1585



Figure 2. Next-Generation Machine-

Learning Approaches and Applications
(A) Deep learning approaches consist of neural
network models in which the depth of the network
structure itself is defined as the number of hidden
layers being considered. These algorithms
generate predictive models based on an input
layer, the hidden (deep) layers, and an output
layer. The data are processed and fed into the
input layer. Next, the hidden layer transforms the
data into a representation that can be learned and
fed forward to the next layer, which again trans-
forms the data into a new representation. Errors
made based on the training data labels are back-
propagated through the network and the model is
tuned for higher performance. The output layer
generates a prediction (classification or regres-
sion) based on the tuned hidden layers.
(B) Deep learning architectures present great op-
portunities in drug discovery. Taking in multiple
types of data, such as multi-omics data, the
SMILES representation of a given compound, or
the output of many different phenotypic assays,
deep learning networks could be designed to
perform a myriad of predictive tasks. Here, we
exemplify and simplify a multi-task learning
application, in which the drug toxicity and drug
response are predicted based on the input data.
(C) Deep learning applications for synthetic
biology include the prediction of novel design
rules, molecular components, and gene cir-
cuitries, based on input data such as genomic
sequences, composition data, and functional data
from existing components and gene circuits.
modifications—to explore how the relationships between

different biomolecules change in disease states compared to

healthy states. Starting with data from a healthy cohort, one

could train a deep learning algorithm (e.g., a deep neural

network) to learn the fundamental characteristics that define

healthy states. After training, the algorithm could be provided

data from a patient cohort and used to predict differences be-

tween the healthy and disease states, identifying differentiating

sets of regulatory interactions and biomolecules that could be

validated and explored further. Similar approaches have been

utilized in the context of network inference, where topological

features are identified that can be attributable to differences in

phenotypic observations at the expression level (de la Fuente,

2010; Mall et al., 2017).

As noted above, there is a need to better understand the com-

plex, hierarchical structure of biological networks underlying dis-
1586 Cell 173, June 14, 2018
ease and how the dysregulation of these

networks may lead to a disease state.

Here is where capsule networks (Hinton

et al., 2011; Sabour et al., 2017), a next-

generation machine learning method,

could be of high value. Capsule networks

involve a new type of neural network ar-

chitecture, where CNNs are encapsu-

lated in interconnected modules. As

described earlier, CNNs are a special

kind of deep neural network that pro-

cesses multi-dimensional data, such as
the -omics datasets found in network biology. A capsule

network, on the other hand, is a representation of a deep neural

network as a set of modules (capsules), which allows for the

learning of data structures in a manner that preserves hierarchi-

cal aspects of the data itself. This representation has been

particularly useful in the analyses of image data, as it allows for

the algorithms to learn features of images independent of

viewing angle of the image, a common problem with CNN appli-

cations.

Capsule networks are ripe for application in network biology

and disease biology given that biological networks are highly

modular in nature, with specified layers for the many biomole-

cules, while allowing each of these layers to interact with other

layers. In the context of capsule networks, each biological layer

could be treated as a capsule; with data generated across the

different biological layers (e.g., transcriptomics, proteomics,



metabolomics), CNNs associated with each capsule could be

trained to learn the specific properties of each of these layers

independently. Applying the premises of dynamic routing (i.e.,

the act of relaying information) between capsules would allow

for the different capsules to take as inputs the output of any other

capsule, thereby enabling the model to learn how each layer in-

teracts and depends on the others. This approach would allow

one to study highlymodular systems such as biological networks

comprised of genes, proteins, metabolites, etc., and analyze

how the functional organization and interplay of such networks

and their sub-networks are disrupted in disease states.

We are not aware of any biological applications of capsule net-

works, but their unique features could enable us to disentangle

and tackle the complexities of human disease. As we describe

below, the successful implementation of capsule networks and

other deep learningmethodswill depend critically upon the avail-

ability of suitably large, high-quality, well-annotated datasets.

Drug Discovery

In drug discovery, there is a critical need to characterize the

mode of action of compounds, identify off-target effects of

drugs, and develop effective drug combinations to treat complex

diseases (Chen and Butte, 2016). Network biology approaches,

along with machine-learning algorithms, have been successfully

applied in these areas; for example, inferred networkmodels and

transcriptomics have been used to predict the likely targets of

compounds of interest (e.g., di Bernardo et al., 2005; Woo

et al., 2015). However, significant challenges remain, particularly

in closing the gaps between the biological and chemical aspects

of drug discovery and development. Below, we highlight how

next-generation machine-learning algorithms, in the context of

network biology, could bring added capabilities to address these

challenges and accelerate efforts in drug discovery.

Extensive multi-omics data from drug treatments (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Goodspeed

et al., 2016; Musa et al., 2017; Rees et al., 2016; Seashore-Lu-

dlow et al., 2015; Shoemaker, 2006; Yang et al., 2013), together

with large amounts of genotypic data collected and stored in re-

positories such as dbGAP (Mailman et al., 2007) and the GTEx

Portal (Lonsdale et al., 2013), bring the raw biological material

needed to generate comprehensive network models for ma-

chine-learning applications. It is exciting to consider, from a ma-

chine-learning perspective, how one might integrate these

network models and biological datasets with the wealth of infor-

mation available on chemical matter via outlets such PubChem

(Kim et al., 2016), a database of chemical molecules and their

biological activities; DrugBank (Wishart et al., 2006, 2008), which

contains data on drugs and drug targets; and the ZINC database

(Sterling and Irwin, 2015), which includes structural information

on over 100 million drug-like compounds.

Multi-task-learning neural networks are well suited for these

types of applications, where a given system may include many

labels (e.g., response to drug, disease state) across a multitude

of data types (e.g., expression profiles, chemical structures)

comprised of many independent features (Figure 2B). Typical

machine-learning applications define a single task, where a

model is trained to predict a single label. If a new label is to be

learned using the same input data, then a new model is trained;

that is, the learning tasks are treated as independent events.
However, in some cases, there is important information that

can be learned from one task that can inform the learning of

another task. The idea underlying multi-task learning is to co-

learn a set of tasks simultaneously (Caruana, 1998). Single-

task learners aim to optimize the performance for the single

task, while the goal of a multi-task learner is to optimize the per-

formance for all tasks together. Multi-task learners take multiple

representations to learn the system as a whole, thereby learning

multiple tasks at once.

In multi-task learning, multiple related tasks are learned at the

same time, leveraging differences and similarities across the

tasks. This approach is based on the premise that learning

related concepts imposes a generalization on the learning

model, which results in improved performance over a single-

task-learning approach while avoiding model overfitting (Car-

uana, 1998). Importantly, multi-task-learning neural networks

can integrate or synthesize data from many distinct sources

and assays. Thus, a multi-task learner could be trained to predict

the physiological response to a given drug as well as its toxicity

simultaneously by taking into account regulatory network rela-

tionships as well as data from multi-omics experiments, high-

throughput drug screens, biological activity assays, and pheno-

typic observations from drug treatments. Recent successes,

such as the prediction of drug toxicity in cancer cell lines and

drug sensitivity in breast cancer cell lines (Ammad-Ud-Din

et al., 2017; Costello et al., 2014; Tan, 2016), highlight the power

of multi-task learning for drug discovery.

It is exciting to consider howmulti-task learners could be used

to bridge the gap between the biological and chemical aspects

of drug discovery by incorporating structural data on chemical

entities. One could, for example, use simplified molecular-input

line-entry system (SMILES) representations of drugs (Anderson

et al., 1987) as input data to the learner. The SMILES represen-

tation translates the structure of chemical species into a linear

text string, which can be readily incorporated into machine-

learning applications. Providing a multi-task-learning algorithm

with the SMILES representations and identified targets of

different compounds, along with their transcriptional and toxicity

profiles, could enable the algorithm to be trained to predict po-

tential side effects or likely targets of new compounds under

consideration. Additionally, one could use natural language-pro-

cessing techniques such as word embeddings (Mikolov et al.,

2013a, 2013b) to learn specific properties of drugs based on

their SMILES representations, complementing the multi-task

learner while allowing for the identification of key properties

and/or structural features of compounds that could be incorpo-

rated or removed in subsequent drug design efforts.

These machine-learning approaches could also be utilized to

study and exploit the ‘‘dirtiness’’ of drug compounds. Most, if

not all, compounds hit more than their primary target, and these

effects vary in a dose- and network-dependent fashion. Multi-

task-learning neural networks are well suited to learn aspects

from diverse data types (e.g., pharmacokinetic and pharmaco-

dynamic properties of different drugs, multi-omics data from

cellular screens of such drugs, etc.) so as to better understand

and predict input-output relationships (e.g., between the bio-

physical and structural properties of various chemical entities,

their molecular targets, and the biological responses they
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induce). Many drug developers view off-target effects as detri-

mental artifacts; however, one can envision using machine-

learning approaches to turn such effects into advantageous

properties that could be exploited and/or accounted for in drug

combinations. For example, it is conceivable that a capsule-

network model might be used to study a complex disease and,

in doing so, predict that multiple targets need to be inhibited in

order to treat the disease; these predictions could be utilized

by a multi-task learner to identify dirty compounds or combina-

tions of such compounds that hit all of the needed targets.

Accordingly, we foresee multi-task learning, in conjunction with

other deep learning approaches, as being instrumental to tack-

ling the problem of biological and chemical data integration in

drug discovery and creating multi-layered predictive network

models that help advance rational drug design.

Microbiome Research

The humanmicrobiome consists of themicroorganisms—bacte-

ria, archaea, viruses, fungi, protozoa—that live on or inside the

human body. The diversity of microbes at each body site is stag-

gering (Human Microbiome Project Consortium, 2014), and it is

now accepted that these microbiota, which exist in dynamic in-

terconnected ecosystems, play a central role in health, disease,

and development. There is a deluge of metagenomic data on the

human microbiome, but converting these data into biologically

and clinically meaningful mechanistic insights remains a major

challenge. This presents an excellent opportunity for network

biology approaches that harness the power of next-generation

machine-learning algorithms.

Microbes and host cells at different body sites interact by

producing, exchanging, and utilizing small biomolecules, pri-

marily metabolites. These interactions lead to metabolic net-

works within cells, across cells, across species, and across

kingdoms. This creates an opportunity to generate meta-meta-

bolic network models, based on shared metabolites, for any

given microbiota-host system. Such models could be used to

map, dissect, and understand polymicrobial-host interactions,

as well as predict and gain insights into the synergistic and

dysbiotic relationships that can arise between hosts and their

microbial passengers.

Metabolic network models have been constructed for a num-

ber of microbial model organisms (e.g., Escherichia coli), as well

as human cells. These models, which provide a global picture of

how metabolites interact via biochemical reactions in a given

cell, could be leveraged, modified, and integrated to create

meta-networks that span multiple organisms or cell types. Un-

fortunately, our understanding of the metabolic networks or

functions in many microbes is limited or non-existent due to

sparse data and measurements on such microbes. This poses

a significant challenge for the generation of meta-metabolic

network models, one that could benefit from an area of machine

learning known as transfer learning. In contrast to multi-task

learning, transfer learning aims at learning a specific task from

knowledge acquired while learning a different but related task

(Pan and Yang, 2010). Biological systems share many character-

istics, suggesting that data generated in one system can help

inform another. The challenge becomes how to best apply the

knowledge learned in a given system to a novel system for which

limited data exist.
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Transfer learning provides paradigms that allow one to make

inferences and predictions on new systems based on observa-

tions made in other systems. Specifically, transfer learning en-

ables one to repurpose a model used to learn a particular task

as the starting point to learn a different but related task. The con-

cepts behind transfer learning readily apply to problems in

biology. Consider the case of metabolism and metabolic net-

works as an example—the immutable nature of biochemical

compounds (i.e., ‘‘glucose’’ in E. coli is the same organic com-

pound as ‘‘glucose’’ inB. anthracis) provides a basis for inductive

transfer of knowledge between organisms, which implies that

machine-learning models optimized in model organisms can

be reused or repurposed to learn features on a different organ-

ism for which data are scarce.

This opens an exciting avenue for studying the metabolic intri-

cacies of microbial communities, where one can ‘‘transfer’’ or

use learned information on the metabolic network from a well-

studied species such as E. coli to inform the network models

of under-studied species and thereby accelerate our under-

standing of multiple species in the microbiome. Similar to

learning features on different microbes in a complex microbial

community based on transfer learning, we can conceptualize

machine-learning models in which we leverage the knowledge

gained on simpler systems to understand more complex sys-

tems. In this way, one may be able to build comprehensive

models of the metabolic interactions and relationships between

the microbiota and host. Such models could be trained on

appropriate datasets spanning healthy and disease states and

used to predict how the disappearance, introduction, or

outgrowth of a particular species might disrupt or enhance the

metabolic balance of the ecosystem, producing, for example,

beneficial metabolites that promote health or toxic metabolic by-

products that damage host tissue. Of note, these advanced ma-

chine-learning techniques and network biology approaches

need not be limited to human health applications—they could

be readily extended to microbiota found in agricultural, environ-

mental, and industrial settings.

Synthetic Biology

Synthetic biology is focused, in part, on creating synthetic gene

networks out of molecular components, and using these circuits

to reprogram living cells, endowing them with novel capabilities

(Cameron et al., 2014; Elowitz and Leibler, 2000; Gardner et al.,

2000; Mukherji and van Oudenaarden, 2009; Purnick andWeiss,

2009). The design and construction of synthetic gene circuits,

however, is far from straightforward—early versions of circuits

rarely function as intended and typically require many weeks or

months of post hoc tweaking. These development efforts are

hindered by a limited understanding of core design principles

for gene circuits and a lack of diverse, well-characterized com-

ponents for network construction. As synthetic biology extends

its reach into broad application areas (e.g., health, agriculture,

energy, environment) (Khalil and Collins, 2010), there is a

growing need to take on these challenges so as to make biolog-

ical design more predictable, straightforward, and time efficient;

this creates marvelous opportunities for deep learning ap-

proaches, as we highlight below.

Multiple levels of organization exist in synthetic gene circuits,

and these could be explicitly accounted for in deep learning



algorithms, as noted above. At the base level in a synthetic cir-

cuit, there are individual molecular components, such as genes,

promoters, operators, terminators, and ribosome binding sites

(RBSs). At the intermediate level, there are regulatory units

made up of multiple components, such as gene-promoter pairs.

At the highest level, regulatory units interact to create a particular

gene circuit, e.g., two gene-promoter pairs can be arranged in a

mutually inhibitory network to create a genetic toggle switch. At

each of these levels, one can identify sequence representations

that define certain aspects of regulation and control, as well as

compositional relationships (e.g., spatial arrangement and orien-

tation) and interactions between biomolecules, molecular com-

ponents, and/or sub-components that impact functional outputs

and behaviors.

To create appropriate training datasets for deep learning ap-

proaches, one could generate, sequence, and functionally char-

acterize large, diverse sets of molecular components, regulatory

units, and synthetic gene circuits (Figure 2C). The functional

characterization could include quantifying the strength of

RBSs, the Hill coefficients for promoter-gene pairs, and the

response times of gene circuits, among many other variables.

Since deep learning approaches rely heavily on large amounts

of data, it would be useful to develop and implement fast

‘‘component-to-readout’’ experimental workflows, and similar

workflows for regulatory units and gene circuits, that integrate

robotics with plate-based assays and machine-interpretable

functional readouts.

One can then envision using the aforementioned sequencing

and functional characterization data to generate a predictive

model across themultiple levels of biological organization in syn-

thetic gene circuits, from molecular components to regulatory

units to the circuits themselves. To do so, one could develop a

multi-staged deep learning model that captures the essence of

each of these organizational levels from a learning model that

embeds biological sequences to ones that embed regulatory

motifs and circuit structures. For example, recurrent neural

networks could be utilized to encode sequences for different

components, where a sequence could be treated as a specific

‘‘sentence’’ that allows one to learn specific ‘‘sentence

properties’’—style, syntax, and topic—that equate to specific

sequence properties—promoters, binding regions, and termina-

tors. Additionally, convolution neural networks could be used to

encode features on the topological organization of regulatory

units and synthetic gene circuits. The algorithms could be

trained to learn the sequence-function relationships for different

components, as well as the composition-function relationships

for regulatory units and synthetic gene circuits. In this manner,

the model could learn key aspects of synthetic gene circuits

both from a regulatory (network control) perspective and a topo-

logical (network architecture) perspective.

The generated deep learning model could be used to identify

fundamental design principles for synthetic biology. Corre-

spondingly, the platform could be utilized to create components

(e.g., inducible promoters, operator sites, etc.) with enhanced or

novel functions and thereby expand the number and diversity of

molecular parts available for synthetic biology development ef-

forts. The deep learning model could also be purposed to design

and identify novel regulatory units and synthetic gene networks,
each with desired performance specifications. For example, for

a given desired function, the model could be used to generate

a set of gene circuitries that are predicted to produce said func-

tion. Combining such an approach with mathematical modeling

to characterize the regions of stability and operability of each

predicted circuit would allow one to iterate, very rapidly, through

thousands of potential circuitries. The most promising candi-

dates could be synthesized, tested, and validated. These devel-

opments could serve to fast-track design efforts in synthetic

biology, facilitating the creation of complex synthetic gene net-

works for a wide range of biomedical applications.

Challenges and Future Outlook

It is clear from the above discussion that there are great oppor-

tunities at the intersection of network biology and next-genera-

tion machine learning. However, there are equally great chal-

lenges that need to be overcome. The most critical and central

to these efforts is the need for massively large datasets. Deep

learning methods and other next-generation machine-learning

approaches are exceptionally data hungry. We live in the age

of big data in biology and medicine, where data are collected

on many different layers of biological organization. Data

captured from biological systems can be incredibly complex,

with many thousands of variables capturing many different fac-

ets of the biological system. However, themajority of these data-

sets are orders of magnitude too small for deep learning algo-

rithms to be applied appropriately.

There aremany options available to take on this challenge. The

first and foremost is to invest in the collection of suitably large,

well-annotated datasets for state-of-the-art studies in network

biology. Multi-omics datasets can be prohibitively expensive,

and thus, we need to consider alternatives to supplement or

complement such data. Increased utilization of imaging data

(including video) to characterize morphological or phenotypic

changes of cells (e.g., in response to drug treatments) is one

attractive possibility, as many deep learning algorithms have

been successfully applied to imaging data in the context of

diagnostics. Such efforts could be enhanced by creating cell

lines with fluorescent or colorimetric readouts that report on

cellular responses to various treatments or environmental

perturbations. The small, sparse nature of many biological data-

sets also presents an interesting challenge to machine-learning

researchers—namely, producing a new generation of deep

learning algorithms specifically designed to handle such da-

tasets.

Another possibility is to generate in silico data with properties

of real data. For image analysis in the context of deep learning,

this is often accomplished using generative adversarial net-

works (GANs), which learn to create datasets that are similar

to the training data. GANs are deep neural network architec-

tures comprised of two neural networks that are pitted against

each other—one is a generative model that produces new data

that mimic the distributions of the training dataset, while the

other is a discriminative model (the adversary) that evaluates

the new data and determines whether or not it belongs to the

actual training dataset. Competition between the two neural

networks serves to improve their methods until the generated

datasets are indistinguishable from the training dataset. This

machine-learning approach could be readily extended to the
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multi-omics datasets that drive network biology. A simple

example would be using GANs to generate dramatically larger

expression datasets that can be used in the context of

network inference to generate predictive models of transcrip-

tional regulation.

The ‘‘black box’’ nature of most next-generation machine

learning models presents an additional challenge for biological

applications. It is often difficult to interpret the output of a

given model from a biological perspective, thereby limiting

the utility of the model in providing insights into underlying bio-

logical mechanisms and functional network architectures. This

is not always the case, particularly for simpler machine

learning methods. Sparse linear regression models (e.g.,

elastic net, lasso and ridge regression [Hastie et al., 2009]),

for example, learn optimal coefficients that represent a relative

weight for each feature. In such instances, model coefficients

can inform researchers of the relative ‘‘importance’’ of each

feature in the model. However, for more advanced machine-

learning methods, such as deep neural networks, the training

procedure transforms the input data in such a way that it can

be difficult to determine the relative importance of features or

whether a feature is positively or negatively correlated with the

outcome of interest. Interpretation of model features is an

open challenge in machine learning, with great attention being

given to the interpretation of how particular models relate to

input features (Lakkaraju et al., 2016; Letham et al., 2015; Lip-

ton, 2016). There is a critical need to develop means to trans-

form the ‘‘black boxes’’ of deep learning into ‘‘white boxes’’

that can be opened up and interpreted meaningfully from a

biological perspective.

We have a long way to go to uncover and harness the net-

worked intricacies and complexities of living systems, and ma-

chine learning itself is far from fulfilling its potential in biological

research. Nonetheless, ongoing and emerging developments

in the application of machine-learning approaches to better un-

derstand complex biological networks enable us to predict an

exciting and deep future for network biology.
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